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embryo3. To be considered an ESC, the cell must satisfy 
the following properties: 1) form from the inner cell 
mass of the blastocyst; 2) be capable of an unlimited 
number of divisions; 3) be capable of continuous prolif-
eration; 4) be clonogenic; 5) have the transcription factor 
Oct4; 6) be able to differentiate into cells that are from 
all three primary germ layers of the embryo (endoderm, 
mesoderm and ectoderm); and 7) not require a signal 
or G1 stage in the cell cycle, to initiate DNA replica-
tion. The size of human ESCs are around 14 μm while 
mouse ESCs are closer to 8  μm4. ESCs are pluripotent 
and thought to have potential in cell replacement thera-
pies, organ transplants and DNA restoration5. Despite 
its numerous beneficial characteristics and potential 
uses, today, ESCs are not being used for clinical use due 
to ethical issues that arise during its retrieval process. 
When isolating ESCs, the inner cell mass has to be iso-
lated from the blastocyst and when the inner cell mass is 
isolated, the blastocyst or embryo destructs. In addition 
to the ethical issues, ESCs are not clinically being used 
due to the possibility of ESCs forming tumors6. 

Induced pluripotent stem cells

When c-Myc, KLF4, Oct4 and Sox2 are imposed into 
somatic cells, the cells become, like ESCs, pluripotent7-9. 
These cells are then, called iPSs. iPSs are obtained from 
adult tissues. The derivation period of iPSs from somatic 
cells is around 3 to 4 weeks for human cells and 1 to 2 
weeks for mouse cells. On top of having a long deriva-
tion period, the derivation process of iPS is inefficient. 
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Stem cells are unspecialised cells that can divide, renew, and differentiate into more special-
ised cells. Due to their unique properties, stem cells are known for their use in therapies and 
treatments for missing tissues and damaged parts of the body. However, due to the invasive 
nature and other ethical issues with the retrieval process and usage of stem cells, stem cells 
are clinically being used in a limited manner. Furthermore, due to the invasive nature of the 
retrieval process elsewhere, dental tissues are one of the most preferred sources for stem 
cells. This review covers all of the characteristics of dental tissue-derived stem cells and their 
potential future uses. 
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Introduction

Stem cells are undifferentiated cells that are capable of 
differentiating into more specialised cells with specif-
ic functions1. They mainly divide into two categories: 
pluripotent stem cells – cells that can differentiate into a 
variety of cells – and multipotent stem cells – cells that 
can differentiate into a limited variety of cells. Pluripo-
tent stem cells further divide into embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSs), while 
multipotent stem cells consist of adult stem cells known 
as somatic or postnatal stem cells2.

Embryonic stem cells

ESCs originate from the inner cell mass of a mammalian 
blastocyst, which is the early-stage of a preimplantation 
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The derivation efficiencies are around 0.01% to 0.10%10. 
Despite the fact that iPSs were made to become the alter-
native of ESCs and were studied due to the invasive 
nature of retrieving ESCs, iPSs are very limited com-
pared to ESCs, in terms of clinical use, due to the repro-
gramming process. On top of this, iPSs have a long and 
inefficient derivation process and can be reprogrammed 
in a detrimental manner. For example, an iPS can end 
up inducing growth of a damaged body part. This can 
eventually lead to tumours and cancer11. Despite these 
issues, when fully understood, iPSs are believed to have 
potential in organ synthesis, tissue repair and formation 
of red blood cells12.

Mesenchymal stem cells

Within adult stem cells, cells known as mesenchymal 
stem/stromal cells (MSCs), are considered to be special 
due to being immature and capable of a variety of dif-
ferentiations. On top of being able to differentiate into 
more specialised cells with specific functions, MSCs 
have the ability to self-renew, grow fast, maintain their 
property after differentiation, and migrate to areas that 
need aid13,14. 

Positive markers that distinguish MSCs from other 
cells include CD13, CD73, CD105 and CD146. In 
addition to these positive markers, MSCs have negative 
markers: CD11b, CD14, CD19, CD34, CD45, CD79α 
and HLA-DR. However, to be officially recognised as 
a human MSC, on top of having both the positive and 
negative markers stated above, the cells must be adher-
ent to plastic and be able to differentiate into at least 
osteoblasts, adipocytes and chrondroblasts2,15.

MSCs can be retrieved from many locations: bone 
marrow, human endometrium, adipose tissue, amniotic 
fluid, the human amnion membrane, the chorion mem-
brane, the placenta, cord blood, the umbilical cord, 
exfoliated deciduous teeth etc16. From these sources, 
dental tissues are considered a suitable source for future 
clinical stem cell usage, due to being a rich source and 
having less invasive stem cell-retrieval processes2.

Dental stem cells

There are eight major populations of dental tissue-derived 
MSCs: dental pulp stem cells (DPSCs), stem cells from 
human exfoliated deciduous teeth (SHEDs), periodontal 
ligament stem cells (PDLSCs), dental follicle progeni-
tor cells (DFPCs), alveolar bone-derived mesenchymal 
stem cells (ABSMCs), stem cells from apical papilla 
(SCAPs), tooth germ progenitor cells (TGPCs) and gin-
gival mesenchymal stem cells (GMSCs)16,17. 

Dental pulp stem cells (DPSCs)

DPSCs were the first adult human dental stem cells to be 
identified. They can be recognised through the follow-
ing markers: CD9, CD10, CD13, CD14, CD19, CD24, 
CD29, CD31, CD34, CD44, CD45, CD59, CD73, CD90, 
CD105, CD106, CD117, CD133, CD146, CD166, 
CD271, dentin sialophosphoprotein during odontoblast 
differentiation, dentin matrix protein 1 during odonto-
blast differentiation, alkaline phosphatase during calci-
fied and mineralized tissue differentiation, osteopontin 
during early stages of osteogenic differentiation and 
bone sialoprotein during late mineralized tissue differen-
tiation18. Furthermore, STRO-1 and telomerase activi-
ties show the differentiation availability of each DPSC. 
Low telomerase activity indicates that the DPSC was 
differentiated. On the other hand, when the telomerase 
activity is high, the DPSC is undifferentiated. DPSCs 
are easily extractable and revivable19. Although DPSCs 
are inactive in their dental pulp form, when an injury 
occurs, DPSCs become active. Furthermore, similar to 
other dental tissue-derived MSCs, DPSCs do undergo 
multi-differentiation and self-renewal. DPSCs, along 
with SHEDs, are also known to take a long time in terms 
of initial colonisation periods4. However, unlike many 
other dental tissue-derived MSCs, DPSCs are known 
to be affected by their retrieval location. For example, 
MSCs from the inner dental pulp chamber have a higher 
growth rate compared to those from the outer pulp cham-
ber20. DPSCs were also observed to react differently in 
vitro and in vivo. In vitro, DPSCs are able to differentiate 
into adipocytes, osteoblasts, odontoblasts, chondrocytes, 
myocytes, cardiomyocytes, active neurons, melanocytes 
and hepatocyte-like cells21. While in vivo, DPSCs can 
only differentiate into adipocytes, endotheliocytes and 
myofibers22-25. 

Stem cells from human exfoliated deciduous teeth 
(SHEDs)

SHEDS are tooth-derived MSCs that are commonly 
compared with DPSCs. They are more proliferative com-
pared to DPSCs and bone marrow derived mesenchymal 
stem cells (BMSCs)26,27. In addition, they have a higher 
cell population doubling rate than DPSCs. The mark-
ers that distinguish SHEDs are CD11b, CD13, CD14, 
CD19, CD29, CD34, CD43, CD44, CD45, CD56, CD73, 
CD90, CD105, CD146 and CD166. SHEDs also contain 
embryonic stem cell markers, Oct4 and Nanog, neural 
stem cell markers, Nestin, and stage-specific embryonic 
antigens, SSEA-3 and SSEA-428. In addition to being 
able to differentiate into osteogenic and adipogenic 
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cells, SHEDs encourage its host cells to form bone29. 
Although SHED’s quality is not heavily affected from 
its extraction location, SHED was observed to differen-
tiate differently in vitro and vivo. In vitro, SHED was 
observed to differente into osteocyte, odontocyte, adipo-
cyte, chondrocyte, myocyte, neuronal cells, endothelia 
cells and other specific hepatic proteins. In vivo, SHEDs 
do not directly differentiate into osteogenic cells, instead 
they induce new bone formation, and when injected into 
an existing tooth, they are known to aid the creation of 
functional blood vessels28. Furthermore, in vivo, when 
injected along PEGylated fibrin, SHEDs can induce vas-
cularised soft connective tissue30,31.

Stem cells from apical papilla (SCAPs)

Like DFSCs, SCAPs also have a higher mineralization 
potential and proliferation rate compared to DPSCs. The 
positive and negative markers that distinguish SCAPs 
are the following: CD13, CD14, CD18, CD24, CD29, 
CD34, CD44, CD45, CD51, CD56, CD61, CD73, 
CD90, CD105, CD106, CD117, CD146, CD150 and 
CD16618,32. In vitro, SCAPs were observed to have 
additional neural markers such as neurofilament M, 
neuronal nuclear antigen, and neuron-specific enolase, 
and they differentiated into odontogenic, osteoblastic, 
neuronal cells, and hepatocyte-like cells. In vivo, SCAPs 
were observed to produce dentin-pulp like complexes 
and cement/woven bone-like tissue33.

Periodontal ligament stem cells (PDLSCs)

Like SHEDs, PDLSCs are also more proliferative than 
BMSCs. On top of this, they are more clonogenic than 
BMSCs. PDLSCs contain the following markers: CD9, 
CD10, CD13, CD14, CD29, CD31, CD34, CD44, CD45, 
CD59, CD73, CD90, CD105, CD106, CD146 and 
CD166. The quality of PDLSCs, like DPSCs, depends 
on their harvest location. Compared to PDLSCs, which 
are harvested around the alveolar bone, those from the 
root surface are inferior. PDLSCs can restore periodon-
tal tissues such as alveolar bone, cementum and peri-
odontal ligaments17. In vitro, PDLSCs were observed to 
differentiate into cementoblasts, osteoblasts, adipocytes, 
neuronal cells and chondrogenic cells. While in vivo, 
they were observed to, as stated above, regenerate peri-
odontal tissue34. 

Dental follicle progenitor stem cells (DFSCs)

From the dental tissue-derived MSCs, DFSCs have the 
best plasticity. DFSCs have a higher proliferation rate 

compared to DPSCs and SCAPs. They can produce 
cementum and bone, such as the root surface of teeth 
and are known to be used in periodontal and bone regen-
eration therapies35. DFSCs have CD9, CD10, CD13, 
CD29, CD31, CD34, CD44, CD45, CD53, CD59, 
CD73, CD90, CD105, CD106, CD133, CD166, CD271, 
Aggrecan, type 1 collagen, type 3 collagen, Notch-1 
and Nestin as their markers36. DFSCs have heterogene-
ity: each DFSC harvested from different teeth have dif-
ferent mineralization and proliferation rates2. In vitro, 
DFSCs differentiate into calcified nodules, cemento-
blasts, chondrocytes, adipocytes and osteogenic cells. 
While in vivo, DFSCs were observed to produce woven 
bone-like tissue; however, DFSCs were not observed to 
form hard tissue37.

Others

Unlike the other dental tissue-derived MSCs stat-
ed above, ABSMCs do not have all the positive and 
negative markers as stated in the human MSC criteria: 
ABSMC does not have CD14, CD34 and CD45 but 
additionally has CD90 and STRO-1. More specifically, 
ABSMCs have CD11b, CD13, CD14, CD19, CD29, 
CD31, CD34, CD44, CD45, CD71, CD73, CD90, 
CD105, CD146, CD166 and STRO-138-40. In vitro, 
ABSMCs were observed to differentiate into osteoblas-
tic, chrondrogenic and adipogenic cells. In addition to 
its own differentiation, ABSMCs can induce osteogen-
esis in its host. In vivo, ABSMCs were observed to form 
new bone41.

Like SCAPs, TGPCs have a high proliferation rate. 
TGPCs have the following markers: CD14, CD29, 
CD34, CD44, CD45, CD73, CD90, CD105, CD106, 
CD133, CD166 and STRO-142-44. In vitro, they dif-
ferentiate into adipocytes, osteoblasts, odontoblasts, 
chondrocytes, endothelial cells and neuronal cells. 
While in vivo, they were observed to suppress liver 
inflammation42.

Compared to BMSCs, GMSCs have a high prolifera-
tion and population doubling rate. The positive and neg-
ative markers GMSCs contain are CD14, CD29, CD34, 
CD44, CD45, CD73, CD90, CD105, CD106, CD117, 
CD146 and CD166. Furthermore, GMSCs have several 
addition positive markers on top of those included in 
the human MSC criteria: Oct4, Sox2, Nanog, Nestin, 
SSEA-4 and STRO-145-47. In vitro, GMSCs differenti-
ate into adipocytes, chondrocytes, osteoblasts, neuronal 
cells and endoderm-like cells. While in vivo, GMSCs 
were observed to produce tissues in fibrin gels and 
induce bone regeneration when injected into a osteo-
genic medium with collagen gel2.
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example, DPSCs suppress T cell proliferation59. This 
infers that DPSCs can be used as an anti-inflammatory 
treatment. SHEDs help the growth of regulatory T cells 
(Tregs), while inhibiting the proliferation of T helper 
17 (Th17). This specific type of inhibition and growth 
allows SHEDs to restore the balance between Th17 and 
Tregs, which induces the reversal of systemic lupus 
erythematosus-associated disorders2. PDLSCs, on the 
other hand, inhibit the induction of Tregs60. DFSC 
and ABSMC’s relationship with T cell proliferation is 
not clear up until today. However, the pattern between 
DFSCs and the T cell proliferation infers that DFSCs 
can potentially become a treatment for tissue inju-
ries. GMSCs, like DPSCs, inhibit T cell proliferation 
and show similar results to current anti-inflammatory 
therapies and medications2. In addition, by inducing 
M2 polarization, GMSCs accelerate wound healing, 
decrease oral mucositis caused by chemotherapy and 
treat allergic diseases58.

Conclusion

With further research on the immunology of dental 
tissue-derived MSCs, it is believed that dental tissue-
derived MSCs can treat parts of the body that currently 
have no therapies or treatments when damaged, such as 
the heart and brain. Furthermore, it is known that MSCs 
can potentially replace organ transplants and become 
a more personalised cure-all drug that does not cause 
side effects. Once there has been enough research on 
these MSCs, complete tooth regeneration will become 
possible and the supply of dental tissue-derived MSCs, 
whose retrieval process is not invasive, will become 
limitless and enough to be clinically used for numer-
ous cases. Today, it is known that DPSCs, along with 
scaffold technology, can be used to solve the majority 
of dental-related problems. Numerous outcomes and 
research indicate that, once completed and mastered, 
dental tissue-derived MSC therapies will have a huge 
impact in the medical field.
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